Sia questa molecola che la sua cugina più semplice, l’acido cianidrico (HCN, noto anche come acido prussico) sono stati trovati nelle zone esterne e gelide del disco appena formato, nella regione che gli astronomi ritengono analoga alla fascia di Kuiper – il regno dei planetesimi ghiacciati e delle comete nel nostro Sistema Solare, oltre Nettuno.
Le comete mantengono l’impronta incontaminata della chimica primitiva del Sistema Solare del periodo della formazione planetaria. Si pensa che comete e asteroidi dalle zone esterne del Sistema Solare abbiano portato sulla giovane Terra acqua e molecole organiche, aiutando a porre le basi per lo sviluppo della vita primordiale.
«Studi di comete e asteroidi mostrano che la nebulosa che ha dato origine al Sole e ai pianeti era ricca di acqua e composti organici complessi», osserva Karin Öberg, astronoma all’Harvard-Smithsonian Center for Astrophysics a Cambridge, Massachussetts, USA, prima autrice dell’articolo.
«Abbiamo ora indizi ancora più chiari che questa stessa chimica sia presente in altri luoghi nell’Universo, in regioni che potrebbero formare sistemi planetari simili al nostro». Ciò è particolarmente interessante, secondo Öberg, perchè le molecole trovate in MWC 480 si trovano in concentrazioni simili nelle comete del Sistema Solare.
La stella MWC 480, di massa pari a circa il doppio di quella del Sole, si trova a 455 anni luce da noi, nella regione di formazione stellare del Toro. Il disco che la circonda è nei primissimi stadi di sviluppo – essendosi recentemente formato dalla coalescenza di una nebulosa fredda e oscura di polvere e gas. Studi con ALMA e altri telescopi devono ancora scoprire segni evidenti della formazione di pianeti al suo interno, mentre osservazioni a più alta risoluzione potrebbero svelare strutture simili a HL Tauri, di età simile.
Gli astronomi sanno da tempo che le nubi interstellari fredde e oscure sono fabbriche efficienti di molecole organiche complesse – tra cui un gruppo di molecole note come cianuri. I cianuri, e specialmente il cianuro di metile, sono importanti perchè contengono legami carbonio-azoto, essenziali per la formazione degli aminoacidi, i fondamenti delle proteine e i mattoni della vita.
Fino ad ora non era chiaro, comunque, se queste stesse molecole organiche complesse si formassero comunemente e sopravvivessero nell’ambiente energetico di un nuovo sistema planetario in formazione, dove gli urti e la radiazione possono rompere facilmente i legami chimici.
Sfruttando la sensibilità di ALMA gli astronomi hanno potuto vedere che queste molecole non solo sopravvivono, ma prosperano.
Ancora più importante da sottolineare è che le molecole viste da ALMA sono molto più abbondandi di quanto si trovi nelle nubi interstellari. Ciò indica che i dischi protoplanetari sono molto efficienti nel formare molecole organiche complesse e che sono in grado di formarle su tempi scala relativalmente brevi.
Il comunicato ESO
Fonte: Media INAF | Scritto da Redazione Media Inaf