Magazine Scuola

[¯|¯] La derivata, ovvero il limite del rapporto incrementale

Creato il 23 ottobre 2014 da Extrabyte

Assegnata una funzione reale di una variabile reale f(x), diremo che tale funzione è derivabile in un punto x0 del proprio campo di esistenza se e solo se esiste finito il limite del rapporto incrementale:

rapporto incrementale

dove h è l'incremento della variabile indipendente. Per quanto detto, se il rapporto incrementale inteso come funzione della variabile reale h è convergente per h->0, cioè se il limite:

limite rapporto incrementale, derivata

esiste finito, allora diremo che la funzione è derivabile in x0 e chiamiamo tale limite la derivata di f(x) nel punto x0.



Utilizzando la notazione apicale di Lagrange, scriviamo:
deriva prima

Mentre con la notazione di Leibnitz:
deriva prima

La funzione si dirà poi derivabile nel proprio campo di esistenza X, se è derivabile in ogni punto di X.

Applicando la definizione di derivata è possibile determinare la derivata delle funzioni elementari. Nell'animazione grafica seguente

deriva prima della funzione seno

vediamo una interessante approssimazione del rapporto incrementale relativo alla funzione sin(x), la cui derivata è la funzione cos(x). Al tendere a zero dell'incremento h vediamo che il rapporto incrementale tende al cos(x).


Ritornare alla prima pagina di Logo Paperblog