Magazine Astronomia

La missione di GAIA (seconda parte)

Creato il 09 settembre 2014 da Aliveuniverseimages @aliveuniverseim

Pubblicato Martedì, 09 Settembre 2014 06:53
Scritto da Marco Di Lorenzo

ESA GAIA

Gaia Artist's Impression - June 2013
Credits: ESA/ATG medialab; background image: ESO/S. Brunier Gaia Artist's Impression

Nella precedente puntata abbiamo definito cos'è l'astrometria e dato le basi per comprendere il campo di indagine di GAIA. Per capirne il valore vediamo ora, in modo molto rapido, l'evoluzione di questa branca dell'astronomia in tempi recenti...

L' astrometria con il telescopio

Astrometria

L'evoluzione strumentale dell'astrometria, dalla sfera armillare e il sestante (a sinistra) al telescopio-meridiana di Carlsberg fino al satellite Hippatcos (Credit: Dafydd Wyn Evans, ESA)

Mentre l'astrometria visuale, iniziata da Ipparco e sviluppata nei secoli successivi da Tolomeo, Al-Sufi e Tycho Brahe, faceva uso di meridiane, astrolabi e sestanti, il primo grande salto di qualità si ebbe con l'introduzione del telescopio. Grazie ad esso, la precisione delle misure fece un balzo di circa 3 ordini di grandezza, passando da qualche primo d'arco a frazioni di secondo d'arco; questo permise, come già detto, di misurare la parallasse delle stelle più vicine ma si trattava comunque di misure delicate e laboriose per cui, alla fine del 19° secolo, erano state misurate le distanze approssimative di una sessantina di stelle soltanto.

All'inizio del 20° secolo, tuttavia, un'altra rivoluzione diede nuovo impulso all'astrometria: la fotografia. A quel punto la precisione fece un ulteriore miglioramento e il numero di stelle misurate aumentò vertiginosamente. Nel 1924, ad esempio, l'americano F. Schlesinger, pubblica un catalogo con le posizioni di quasi 2000 stelle, con precisione del centesimo di secondo d'arco.

Norcia

Con l'avvento della radioastronomia, a metà del scolo scorso, un'altra finestra si è aperta sull'universo: mentre l'astrometria ottica è limitata dalla distorsione che i raggi luminosi subiscono attraversando l'atmosfera, quella basata sulle onde radio può utilizzare interferometri a lunghissima base, in modo da avere la stessa risoluzione di un radiotelescopio di dimensioni planetarie! Con questa particolare tecnica, chiamata VLBI (Very Long Baseline Interferometry) si è giunti a fare misure di posizione migliori di 0,1 mas (milli-arc-second) su sorgenti puntiformi come i QUASAR. Questo è un ulteriore miglioramento di un fattore 100 rispetto alla banda visibile ed è stato recentemente utilizzato per affinare la misura di distanza di un famoso ammasso stellare, le Pleiadi, visibili anche ad occhio nudo.

NOAOPleaides nrao

Una bella immagine delle Pleiadi nel visibile - Credit: NOAO / AURA / NSF

L'astrometria moderna: satelliti, computers e sensori d'immagine

Arriviamo così alla terza e ultima rivoluzione, che in realtà è molteplice: da un lato, negli ultimi decenni, si sono affermati con prepotenza i sensori di immagine (CCD) che hanno soppiantato le lastre fotografiche e che, uniti alla potenza di calcolo dei moderni computers, hanno reso possibile l'automatizzazione e l'enorme velocizzazione delle misure astrometriche. D'altro canto, con l'avvento dell'astronautica, è divenuto possibile aggirare definitivamente anche nella banda visibile i limiti imposti dall'atmosfera terrestre.

E' così nato nel 1980 il progetto Hipparcos (HIgh Precision Parallax COllecting Satellite), satellite lanciato nel 1989 dall'Agenzia Spaziale Europea (ESA) e primo in assoluto dedicato all'astrometria. In 4 anni di osservazioni ha permesso di realizzare un catalogo con le posizioni di circa 120mila stelle, con una precisione di 1-2 mas (cento di volte migliore delle osservazioni precedenti da Terra). Questo catalogo Hipparcos è stato poi integrato con altre osservazioni da Terra per realizzare il grande catalogo Tycho-2 con 2,5 milioni di oggetti fino alla magnitudine 11, oggi alla base di molti simulatori software (programmi di planetario).

Tycho2

Densità stellare del catalogo Tycho-2, si vede chiaramente l'affollatissima Via Lattea, interrotta dallo schermo di nubi di polvere
Credits: Hog et al. - The Tych-2 catalogue... - Astronomy & Astrophysics - 2000

Il successo di questa missione, unito ai suoi limiti nella capacità di affrontare le nuove sfide dell'astronomia del 21° secolo (ad esempio lo studio dei pianeti extrasolari), ha spinto la comunità scientifica a progettare sistemi ancora più ambiziosi.

Gli americani progettarono il satellite "Full-sky Astrometric Mapping Explorer" o FAME, che avrebbe dovuto mappare 40 milioni di stelle con una precisione di 50 microsecondi d'arco (μas). Il satellite, da lanciare nel 2004, è stato però accantonato per motivi di costo. La Russia e il Giappone hanno nel cassetto progetti ancora più ambiziosi ma, per ora, l'unica agenzia spaziale che è riuscita a concretizzare queste idee è, di nuovo, quella europea. A metà degli anni ‘90, l' ESA comincia a sviluppare il successore di Hipparcos, il Global Astrometric Interferometer for Astrophysics (GAIA).

L'integrazione e l’assemblaggio del satellite sono iniziati nel 2009 e, il 19 Dicembre 2013, il satellite è partito in uno spettacolare lancio a bordo di un vettore Soyuz (di costruzione russa) dalla Guiana francese. Nella prossima puntata, vedremo come è fatto questo avanzatissimo strumento scientifico e cosa permetterà di scoprire.

Lancio

Sitografia:
- http://www.atnf.csiro.au/outreach/education/senior/astrophysics/astrometry_history.html
- http://sci.esa.int/gaia/53198-astrometry-in-space/
http://www.astro.ku.dk/~erik/Tycho-2/letter.pdf


Ritornare alla prima pagina di Logo Paperblog