Magazine Curiosità

Presunte previsioni di Terremoti

Creato il 22 aprile 2014 da Psicosi2012 @martini_mat

Di Patrizia Esposito

———————————————————————————————————————–

Torno ad “approfittare” dello spazio che Matteo mi ha concesso sul blog per parlare nuovamente di terremoti. Il titolo dell’articolo che vi presento oggi è il nome di una sezione del forum Psicosi 2012, dedicata alle previsioni “ad capocchiam” dei terremoti, cioè quelle che indicano il giorno e il luogo esatti di un sisma (preferibilmente catastrofico) sulla base dei parametri più bislacchi (apparizioni, profezie, ecc.). L’ultimissima della serie- segnalata da un nostro caro utente- è quella di un tizio che aveva previsto per il 17 aprile scorso niente poco di meno che il Big One in California. Ma magari bastasse la lettura dei tarocchi per prevedere eventi catastrofici e salvare vite umane! La previsione dei terremoti è una materia spinosa e complessa alla quale si dedicano anima e corpo ricercatori scientifici seri. A tal proposito, vorrei illustrarvi qui di seguito uno studio tutto italiano che, a mio avviso, aggiunge un tassello interessante al mosaico della comprensione dei meccanismi che generano i terremoti. Buona lettura a tutti.

———————————————————————————————————————–

Sul numero di marzo di Le Scienze è stato pubblicato un sunto dello studio condotto da Carlo Doglioni, Salvatore Barba, Eugenio Carminati e Federica Riguzzi. (1) Gli autori hanno analizzato la relazione tra la sismicità e il tasso di deformazione, evidenziando come le aree con terremoti più intensi siano quelle in cui la velocità di deformazione delle rocce è più bassa rispetto alle aree circostanti. Sono partiti dal considerare la crosta terrestre suddivisa in due porzioni: crosta superiore e crosta inferiore. La prima, spessa mediamente 15 km, ha un comportamento fragile ed è influenzata dalla pressione: il carico litostatico, che aumenta con la profondità, esercita una forza di contenimento sulle rocce, rendendole più stabili e aumentandone la resistenza. La crosta inferiore, invece, ha un comportamento duttile ed è influenzata dalla temperatura: il gradiente termico, che diminuisce con la profondità, indebolisce i legami dei reticoli cristallini rendendo le rocce meno stabili. Che cosa significa questo? Significa che le rocce crostali non si deformano tutte allo stesso modo. Infatti, quelle della crosta superiore si deformano “a scatti” attraverso l’attivazione delle faglie, quelle della crosta inferiore, invece, si deformano costantemente nel tempo, senza perdita di coesione, attraverso la distorsione dei reticoli cristallini:

Diverso comportamento meccanico della crosta superiore e della crosta inferiore.

Diverso comportamento meccanico della crosta superiore e della crosta inferiore.

I terremoti sono associati alle deformazione fragili. La transizione tra le due porzioni crostali con diverso comportamento meccanico, detta “transizione fragile-duttile”, corrisponde alla massima resistenza delle rocce, cioè la profondità a cui è necessaria l’energia massima per romperle. Più è profonda questa transizione e più lunga è una faglia, maggiore è il volume di rocce coinvolte nel sisma, quindi maggiore sarà la magnitudo. Per descrivere un evento sismico si utilizzano diversi valori numerici, come la magnitudo momento, la magnitudo locale e l’intensità macrosismica (il fatto stesso che per descrivere un sisma si prendano in considerazione diversi parametri sta ad indicare la complessità del fenomeno).

La legge di Gutenberg-Richter è l’espressione analitica della forza che agisce contemporaneamente sul guscio terrestre e che è responsabile della distribuzione sismica sul pianeta. L’origine di questa forza è ancora nel campo delle ipotesi, tra le quali sono contemplati i moti convettivi nel mantello e gli effetti della rotazione terrestre che spiegherebbero l’attuale deriva verso ovest delle placche litosferiche. La diversa velocità di queste ultime dipende dal grado di disaccoppiamento mantello-litosfera che è funzione della variazione di viscosità nel mantello: maggiore è la viscosità, minore è la velocità della placca.

Funzionamento delle faglie in funzione della transizione “fragile-duttile”.

Funzionamento delle faglie in funzione della transizione “fragile-duttile”.

In figura è illustrato il funzionamento delle faglie in relazione alla transizione fragile-duttile. Nel caso di faglia distensiva la transizione si configura come una zona dilatata in cui si formano delle fratture e dei vuoti che si riempiono di fluidi, in conseguenza all’accomodamento della crosta inferiore in lento ma costante movimento rispetto alla crosta superiore bloccata. Questa zona si espanderà fino a quando non sarà più in grado di sorreggere la parte alta (“tetto” della faglia), a quel punto le rocce si romperanno, il blocco cadrà sotto il suo stesso peso e l’energia potenziale gravitazionale accumulata sarà liberata attraverso le onde sismiche del terremoto. I fluidi presenti saranno espulsi come quando si strizza una spugna e migreranno verso l’alto: ecco perché un evento sismico è accompagnato da una risalita delle falde e da un aumento della portata delle sorgenti. Dopo la scossa principale, il tetto della faglia deve raggiungere una nuova condizione di equilibrio e questo avviene mediante le scosse di assestamento. Nel caso di faglia inversa, invece, la transizione si configura come una fascia in sovrapressione . Le rocce accumulano energia elastica fino al punto di rottura, quando le forze di deformazione superano la resistenza delle rocce e il tetto della faglia viene scagliato verso l’alto, originando il terremoto (possiamo assimilare questo meccanismo ad una molla prima totalmente compressa e poi espansa). Generalmente i terremoti associati a faglie compressive sono più violenti perché occorre più energia per vincere le forze di compressione e perché in questo contesto geodinamico occorre vincere anche la forza di gravità.

Relazione tra tasso di deformazione e magnitudo dei terremoti.

Relazione tra tasso di deformazione e magnitudo dei terremoti.

In figura sono riportati i risultati di osservazioni effettuate sulla sismicità in Italia in un intervallo temporale che va dal 1° gennaio 2007 al 31 dicembre 2011.

In particolare, sono stati messi in relazione i terremoti di magnitudo superiore a 3 con i tassi di deformazione ottenuti in corrispondenza di ciascuno degli epicentri. Il dato più importante è rappresentato dal fatto che i terremoti di magnitudo superiore a 4 sono avvenuti tutti in aree in cui il tasso di deformazione è inferiore a 40 nanostrain per anno (1 nanostrain= 1 mm ogni 1000 chilometri). Cosa significa questo? Significa che le aree che si deformano più lentamente rispetto alle aree circostanti sono le aree crostali “bloccate” che stanno accumulando energia . Anche se l’intervallo di osservazione ha dei limiti temporali, il valore stabilito può essere preso in considerazione come un parametro utile ad individuare aree a sismicità significativa. Sulla mappa della velocità di deformazione si possono sovrapporre le faglie attive note. E’ interessante notare come il terremoto de L’Aquila (2009) e quello in Emilia (2012) siano avvenuti in aree a basso tasso di deformazione. Lo studio condotto si è basato sui dati forniti dalla rete GPS e su modelli numerici. In conclusione: questa nuova idea sui terremoti non serve a sapere con esattezza quando e dove si registrerà un sisma ma può indirizzare gli studi verso aree con maggiore “urgenza” sismica, in cui fare prevenzione attraverso l’adeguamento antisismico degli edifici non a norma e l’educazione al rischio sismico. Vorrei sottolineare ancora una volta come lo studio dei terremoti sia reso complicato dall’impossibilità di investigare il sottosuolo alle profondità di interesse e quella di riprodurre perfettamente in laboratorio le condizioni di stress a cui sono sottoposte le rocce in profondità. Di certo un approccio multidisciplinare può migliorare i metodi di previsione.

Ad ogni modo, diffidate da tutte le previsioni “ad capocchiam” di cui è piena la rete!!

 

Psicosi 2012. Le risposte della scienza”, un libro di divulgazione della scienza accessibile a tutti e scritto per tutti. Matteo Martini, Armando Curcio Editore.



Potrebbero interessarti anche :

Ritornare alla prima pagina di Logo Paperblog

Possono interessarti anche questi articoli :