Studiare l'invertibilità della funzione:
Svolgimento
Il campo di esistenza della funzione assegnata è il campo reale. Il suo grafico è la parabola y=x^2 ed è facile convincersi che la funzione non è strettamente monotona, onde non invertibile. Però è localmente monotona in senso stretto. Precisamente, risulta strettamente crescente in A=[0,+oo) e strettamente decrescente in B=(-oo,0].
Ne consegue che f è localmente invertibile. Per
determinare le inverse locali, risolviamo l'equazione algebrica sul campo reale:
Tale equazione è compatibile se e solo se y>=0, per cui il codominio della funzione è f(X)=[0,+oo). Quindi, assegnato y>=0, risulta:
Da ciò si deduce che le inverse locali sono:
Il grafico della funzione è riportato in fig. 1.
Fig. 1.