Magazine Scienze

La chimica del sequenziamento: passato, presente e futuro

Creato il 15 febbraio 2011 da Emmecola

Come molti di voi sapranno, il 2011 è stato proclamato dall’ONU l’Anno Internazionale della Chimica. La chimica è la scienza centrale, quella che più di ogni altra ha la capacità di guidare il progresso scientifico, grazie alle sue innumerevoli connessioni con la biologia, la fisica, la medicina e chi più ne ha più ne metta. Ho voluto renderle omaggio anche io, scrivendo questo post che partecipa al Carnevale della Chimica coordinato per questo mese da Anna Rita Ruberto di Scientificando.

La chimica del sequenziamento: passato, presente e futuro
IL DNA

Il DNA (o acido deossiribonucleico) è una molecola che ha l’aspetto di una doppia elica formata da due catene di nucleotidi. I nucleotidi sono piccole molecole costituite da un gruppo fosfato, uno zucchero (deossiribosio) e una base azotata; mentre le prime due componenti sono sempre uguali e costituiscono l’ossatura della doppia elica, le basi azotate esistono in quattro “versioni” differenti. Esse si chiamano Adenina (A), Citosina (C), Guanina (G) e Timina (T), e godono di una proprietà importante: la complementarietà. In una molecola di DNA, una A si troverà sempre davanti a una T, così come una C si troverà sempre davanti a una G: questo significa che per leggere una sequenza di DNA non è necessario sequenziare entrambi i filamenti, basta avere uno dei due e quello complementare si potrà ricavare facilmente. E’ proprio sfruttando la proprietà della complementarietà che la DNA polimerasi riesce a replicare le molecole di DNA nel momento in cui è necessario, e cioè quando la cellula deve dividersi per generare due cellule figlie con identico patrimonio genetico: utilizzando un filamento come stampo e un piccolo tratto di DNA come innesco, questo enzima è in grado di sintetizzare l’altro filamento legando uno dietro l’altro i nucleotidi corretti.

IL METODO SANGER

La chimica del sequenziamento: passato, presente e futuro
A Frederick Sanger bastò osservare la DNA polimerasi all’opera per capire come sviluppare il primo metodo per sequenziare il DNA. L’unico ingrediente che dovette aggiungere furono dei nucleotidi particolari, chiamati dideossinucleotidi: queste molecole hanno una modifica chimica tale per cui, una volta inserite nella catena nascente di DNA, ne interrompono la sintesi. La polimerasi non riesce più ad aggiungere altri nucleotidi, e rilascia così un frammento “monco”. A questo punto bisognava fare due cose: misurare la lunghezza di questo frammento e riconoscere il dideossinucleotide che si era legato per ultimo. Con queste due informazioni in mano leggere la sequenza è immediato: se ho ottenuto un frammento lungo 10 nucleotidi dove l’ultimo nucleotide aggiunto è una G, io so che in 10° posizione c’è una G.
La chimica del sequenziamento: passato, presente e futuro
Un tempo per fare questo si eseguivano sullo stesso DNA quattro reazioni separate, per ognuna delle quali si utilizzava un dideossinucleotide diverso: ddATP, ddCTP, ddGTP e ddTTP. Al termine della reazione, si prendevano i frammenti generati da ogni reazione e li si misurava mediante un’elettroforesi su gel: in questo gel, le molecole più lunghe si muovono più lentamente e tutti i frammenti possono quindi essere separati. Al termine, si ricostruiva la sequenza. Con l’avvento dei sequenziatori automatici, si è iniziato a fare tutto in un’unica miscela di reazione, etichettando ogni base azotata con una molecola fluorescente di colore diverso; inoltre, i frammenti si separano in tubi capillari, con un lettore ottico che registra il colore emesso dal DNA al suo passaggio.

La chimica del sequenziamento: passato, presente e futuro

L’invenzione di questo metodo di sequenziamento ha segnato una svolta epocale nel campo della biologia molecolare e lo dimostra il fatto che Fred Sanger ricevette per questo motivo un premio Nobel per la Chimica nel 1980. Tuttavia, occorre molto tempo per sequenziare in questo modo lunghi tratti di DNA: per leggere un intero genoma umano sarebbero necessari più di tre anni di lavoro! Inoltre, è una tecnica molto costosa: si spendono 10 centesimi di dollaro ogni mille basi. Per questi motivi si è passati ora a tecnologie di sequenziamento molto più efficienti ed economiche, le cosiddette tecnologie di seconda generazione.

MONTAGNE DI DATI

Le nuove macchine iniziarono a popolare il mercato dal 2005 in poi, offrendo costi minori e soprattutto enormi quantità di sequenze, vere e proprie montagne di dati che per un sequenziatore Sanger erano inimmaginabili. A farsi concorrenza c’erano diverse aziende, ma a spuntarla fu Illumina/Solexa, che conquistò rapidamente il ruolo di leader nel settore del sequenziamento genomico. I suoi sequenziatori sfruttavano ancora la DNA polimerasi come nella tecnologia precedente, ma introducevano due accorgimenti tecnici che facevano la differenza. Il primo è l’immobilizzazione del DNA su un supporto fisso: le molecole da sequenziare sono infatti incollate a un vetrino tramite degli adattatori. Questo permette di leggere milioni di frammenti di DNA contemporaneamente, perché ciascuno di essi viene a trovarsi in un punto preciso e non si può confondere con gli altri. La seconda, importantissima novità sono i terminatori reversibili. Nel metodo Sanger i nucleotidi modificati bloccavano la sintesi del DNA in modo irreversibile, mentre quelli di Illumina possono essere riattivati, grazie all’azione di un enzima che taglia via la parte di molecola che blocca il lavoro della DNA polimerasi. In questo modo, è possibile monitorare in tempo reale l’aggiunta di tutti i nucleotidi su ogni frammento, fotografando le fluorescenze emesse a ogni passaggio da tutte le molecole di DNA depositate sul vetrino.

La chimica del sequenziamento: passato, presente e futuro

I due grandi rivali di Solexa/Illumina erano, e sono tuttora, ABI/Solid e Roche/454. Le loro tecnologie sono molto diverse, e la prima grossa differenza è che entrambe queste aziende hanno scelto di immobilizzare le molecole di DNA non su un supporto solido, ma su delle piccole sfere, a loro volta poste su un vetrino. ABI/SOLiD ha persino abbandonato la DNA polimerasi per passare a un altro enzima, la DNA ligasi, che unisce frammenti di DNA anziché sintetizzarne di nuovi. Inoltre, ha elaborato un sistema di sequenziamento che consente di leggere due volte lo stesso nucleotide, il che abbassa di molto la possibilità di commettere errori.

La chimica del sequenziamento: passato, presente e futuro

Roche/454, dal canto suo, non utilizza più i nucleotidi fluorescenti, ma sfrutta un prodotto di scarto della polimerasi (il pirofosfato inorganico PPi) per generare dei flash di luce ogni volta che un nucleotide nuovo viene aggiunto. Il trucco è dare il PPi in pasto a una sulfurilasi, un enzima che lo utilizza per generare una molecola di ATP; a sua volta, l’ATP viene prelevato da una luciferasi che lo usa per ossidare una luciferina e produrre un segnale luminoso. Poiché questo segnale è sempre uguale per tutti i nucleotidi, essi devono essere immessi nel sistema un tipo alla volta: prima le A, poi le C e così via.

La chimica del sequenziamento: passato, presente e futuro

Gli incredibili progressi tecnologici e l’utilizzo di nuove chimiche di sequenziamento hanno permesso di fare grandi scoperte scientifiche sul nostro genoma, scoperte che presto ci saranno utili per avere cure personalizzate in base al nostro profilo genetico. Il bello, però, deve ancora arrivare. E arriverà con i sequenziatori di terza generazione, che pur essendo poco più che prototipi, promettono già grandissime cose.

IL SEQUENZIAMENTO DEL FUTURO

I prossimi anni vedranno sicuramente una nuova rivoluzione nel campo del sequenziamento, ma ancora non è chiaro se a portarla saranno macchine sempre più costose e potenti o piccoli strumenti low-cost grandi come una stampante, capaci di entrare con più facilità nella pratica medica di routine.

La chimica del sequenziamento: passato, presente e futuro

La prima strada è quella scelta da Pacific Biosciences, che sta mettendo a punto un sequenziatore mostruoso da 700mila dollari. Il suo punto di forza è essenzialmente uno solo: la capacità di sequenziare singole molecole di DNA. Nelle tecnologie precedenti, infatti, bisognava moltiplicare i frammenti per avere gruppi di molecole tutte uguali da sequenziare: solo così il segnale fluorescente era sufficientemente potente per poter essere visualizzabile dal lettore ottico. Riuscire a leggere una singola molecola di DNA, monitorando in tempo reale l’aggiunta dei nucleotidi, significa poter usare piccole quantità di DNA e risparmiare moltissimi soldi sui reagenti.

Altre due compagnie, invece, hanno deciso di abbandonare del tutto molecole fluorescenti e costosissimi lettori ottici. Ion Torrent ha messo in vendita un sequenziatore piccolissimo, che costa un decimo di quello di Pacific Biosciences: la sua peculiarità è che registra gli inserimenti dei nucleotidi misurando le variazioni di pH durante il sequenziamento.

La chimica del sequenziamento: passato, presente e futuro

Oxford Nanopore, al contrario, dice di essere in grado di leggere una sequenza di DNA basandosi sui cambiamenti nel flusso di corrente che attraversa dei fori di pochi nanometri, cambiamenti che sono caratteristici dello specifico nucleotide che viene aggiunto alla catena.

La chimica del sequenziamento: passato, presente e futuro

Il costo per sequenziare un genoma umano è diminuito di un milione di volte in dieci anni, e forse presto taglieremo il traguardo dei mille dollari. Arriverà il giorno in cui ci presenteremo dal nostro medico di fiducia con una chiavetta USB contenente i nostri dati genetici: grazie a queste informazioni conosceremo i farmaci più efficaci per noi e lo stile di vita che ci aiuterà a restare sani più a lungo. Non sappiamo quando entreremo veramente nell’era della medicina genomica, ma quando quel momento arriverà, il merito sarà anche degli incredibili progressi fatti negli ultimi anni dalla chimica del sequenziamento, un’altra delle infinite declinazioni della scienza di tutte le scienze, la Scienza Centrale.



Potrebbero interessarti anche :

Ritornare alla prima pagina di Logo Paperblog

Possono interessarti anche questi articoli :

Magazines